

Mittelspannungs-Wandler

Wir machen Energie messbar und sichern Ihre Zukunft

- Mittelspannungs-Stromwandler
- Mittelspannungs-Spannungswandler
- Niederspannungs-Stromwandler für den Einsatz im isolierten Bereich von MS-Schaltanlagen

Inhaltsverzeichnis

Technische Begriffe	ab Seite 4
Stromwandler	Seite 4
Spannungswandler	Seite 8

Mittelspann	ungs-Stromwandler für Innenraumanwendung		ab Seite 12
7,2 + 12 kV	Stützer-Stromwandler; schmale Bauform nach DIN 42600-8;	für Verrechnung	Seite 12
7,2 + 12 kV	Stützer-Stromwandler; um 55 mm verlängerte Bauform;	für Verrechnung	Seite 14
7,2 + 12 kV	Stützer-Stromwandler; um 135 mm verlängerte Bauform		Seite 16
7,2 + 12 kV Stützer-Stromwandler; schmale Bauform (DIN 42600-8) mit seitlichen Barrieren			
7,2 + 12 kV Stützer-Stromwandler; um 55 mm verlängerte Bauform mit seitlichen Barrieren			
24 kV	Stützer-Stromwandler; schmale Bauform (DIN 42600-8);	für Verrechnung	Seite 22
24 kV Stützer-Stromwandler; schmale Bauform (DIN 42600-8) mit seitlichen Barrieren			
36 kV	Stützer-Stromwandler;	für Verrechnung	Seite 26

Mittelspannungs-Spannungswandler für Innenraumanwendung					
7,2 + 12 kV	Spannungswandler; einpolig isoliert;	schmale Bauform nach DIN 42600-9;	für Verrechnung	Seite 28	
7,2 + 12 kV	Spannungswandler; zweipolig isoliert	; schmale Bauform nach DIN 42600-9		Seite 30	
24 kV	Spannungswandler; einpolig isoliert;	schmale Bauform nach DIN 42600-9;	für Verrechnung	Seite 32	
24 kV	Spannungswandler; zweipolig isoliert	; schmale Bauform nach DIN 42600-9		Seite 34	
36 kV	Spannungswandler; einpolig isoliert			Seite 36	

Niederspannungs-Stromwandler für den Einsatz im isolierten Bereich von MS-Schaltanlagen					
0,72 + 1,2 kV	Zweiteiliger Kabelumbau-Stromwandler für Innenraumanwendung	Seite 38			
0,72 + 1,2 kV	Einteiliger Durchsteck-Stromwandler für Innenraumanwendung	Seite 40			
0,72 kV	Einteiliger Durchsteck-Stromwandler für Innenraumanwendung; für Verrechnung	Seite 42			

Stromwandler - Technische Begriffe

Stromwandler sind Spezialtransformatoren zur proportionalen Umsetzung von Strömen großer Stromstärken auf direkt messbare, kleinere Werte. Bedingt durch ihren konstruktiven Aufbau, sowie ihr physikalisches Wirkprinzip, wird eine sichere galvanische Trennung zwischen Primärkreis und Messkreis erzielt.

Primärer Wert des primären Stromes, der den Stromwandler kennzeichnet und für den er

Bemessungsstrom bemessen ist.

Sekundärer Wert des sekundären Stromes, der den Stromwandler kennzeichnet und für den er

Bemessungsstrom bemessen ist.

Bemessungsübersetzung Verhältnis des primären Bemessungsstromes zum sekundären Bemessungsstrom.

Die Bemessungsübersetzung eines Stromwandlers wird auf dem Leistungsschild als

ungekürzter Bruch angegeben.

Bürde Impedanz des Sekundärkreises, ausgedrückt in Ohm mit Angabe des Leistungsfaktors.

Bemessungsbürde Wert der Bürde, auf dem die Genauigkeitsangaben des Stromwandlers beruhen.

Hinweis: Die Bürde wird üblicherweise als Scheinleistung in VA ausgedrückt.

Bemessungsleistung Wert der Scheinleistung (in [VA] bei festgelegtem Leistungsfaktor), die der Wandler

bei sekundärem Bemessungsstrom und Bemessungsbürde an den Sekundärkreis

abgeben kann.

Bemessungsfrequenz Wert der Frequenz, welcher der Bemessung des Stromwandlers zugrunde liegt.

Genauigkeitsklasse Angabe für einen Stromwandler, dessen Messabweichungen unter vorgeschriebenen

Anwendungsbedingungen, innerhalb festgelegter Grenzen liegen.

Fehlwinkel [$\Delta φ$] Winkeldifferenz zwischen dem primären und sekundären Stromzeiger. Dabei ist die

Richtung der Zeiger so gewählt, dass bei einem idealen Stromwandler der Fehlwinkel

gleich Null ist.

Strommessabweichung (Übersetzungsfehler)

Messabweichungen, die ein Stromwandler bei der Messung eines Stromes verursacht und die sich daraus ergeben, dass die tatsächliche Übersetzung von der Bemessungs-

übersetzung abweicht.

Die in Prozent ausgedrückte Strommessabweichung wird nach folgender Formel

berechnet:

$$F_{\rm i} [\%] = \frac{(K_{\rm n} I_{\rm s} - I_{\rm p}) \times 100}{I_{\rm p}}$$

F_i = Strommessabweichung in %

K_n = Nennübersetzung

I_p = tatsächlicher primärer Strom

ls = tatsächlicher sekundärer Strom, wenn lp unter Messbedingungen fließt

Höchste Spannung für Betriebsmittel U_m

Effektivwert (kV) der höchsten Leiter-Leiter-Spannung, für die ein Messwandler im Hinblick auf seine Isolation bemessen ist.

Gesamtmessabweichung

Im stationären Zustand der Effektivwert der Differenz zwischen:

- a) den Augenblickswerten des Primärstromes und
- b) den Augenblickswerten des mit der Bemessungsübersetzung multiplizierten tatsächlichen sekundären Stromes, wobei die positiven Vorzeichen des primären und sekundären Stromes der Vereinbarung für die Anschlussbezeichnungen entsprechen.

Die Gesamtmessabweichung F_G wird im Allgemeinen in Prozent der Effektivwerte des Primären Stromes nach folgender Formel berechnet:

$$F_{g} = \frac{100}{I_{p}} \times \sqrt{\frac{1}{T} \times \int_{0}^{T} (K_{n} i_{s} - i_{p})^{2} dt}$$

K_n = Bemessungsübersetzung

I_p = Effektivwert des primären Stromes

i_p = Augenblickswert des primären Stromes

is = Augenblickswert des sekundären Stromes

T = Periodendauer

Bemessungs-/
Begrenzungsstrom [Ipi]

Überstrom-Begrenzungsfaktor (FS)

Thermischer Bemessungs-Dauerstrom [I_{cth}]

Thermischer Bemessungs-Kurzzeitstrom [I_{th}]

Bemessungs-Stoßstrom $[I_{dyn}]$

"Offenspannung" von Stromwandlern

Erdung von Sekundärklemmen

Kapazitiver Spannungsabgriff Wert des niedrigsten primären Stromes, bei dem bei sekundärer Bemessungsbürde die Gesamtmessabweichung des Stromwandlers gleich oder größer 10 % ist.

Verhältnis des Bemessungs-Begrenzungsstromes zum primären Bemessungsstrom.

Wert des Dauerstromes in der Primärwicklung, bei dem die Übertemperatur den in der Norm festgelegten Wert nicht überschreitet, wobei die Sekundärwicklung mit der Bemessungsbürde belastet ist.

Effektivwert des primären Stromes, dem der Stromwandler für die Dauer von 1 Sekunde bei kurzgeschlossener Sekundärwicklung ohne Beschädigung standhält.

Scheitelwert des primären Stromes, dessen elektromagnetische Kraftwirkung der Stromwandler bei kurzgeschlossener Sekundärwicklung ohne elektrische und mechanische Beschädigung standhält.

Stromwandler, welche nicht direkt mit einem Verbraucher beschaltet werden, müssen aus Sicherheitsgründen sekundärseitig kurzgeschlossen werden!

Ein sekundärseitig offen betriebener Stromwandler induziert an seinen Sekundärklemmen sehr hohe Scheitelspannungswerte. Die Beträge dieser Spannungen können, abhängig von der Dimensionierung des Stromwandlers, Werte bis zu einigen Kilovolt erreichen und stellen somit eine Gefahr für Personen und die Funktionssicherheit des Wandlers dar.

Gemäß DIN VDE 0141 (01/2000) Absatz 5.3.4, sind Strom- und Spannungswandler für Nennspannungen ab U_m = 3,6 kV sekundärseitig zu erden. Die Ausführung der Erdungsanschlüsse ist ab der Baureihe 10N vorgeschrieben.

Auf Kundenwünsch können unsere Mittelspannungs-Stromwandler der Typen (E)CTS12M11(U)-T und (E)CTS24M32(U)-T mit einem kapazitiven Teiler nach EN 61243-5 ausgerüstet werden.

Für einfache Spannungsanzeigen steht die Kapazität C1 der Hochspannungsisolierung an einer zusätzlichen Sekundärklemme Ck im Sekundärklemmkasten zur Verfügung. Der kapazitive Spannungsabgriff ist für das HR-System ausgelegt.

Bei der Bestellung von Wandlern mit kapazitivem Teiler ist es erforderlich, die tatsächliche Betriebsspannung U_N (Bemessungsspannung) anzugeben, z.B. $U_m = 24$ kV, $U_N = 20$ kV.

Fehlergrenzwerte für Stromwandler der Klassen 0,2...3 gemäß DIN EN 61869, Teil 2

Bei Bemessungsfrequenz und bei Belastung der Bemessungsbürde zwischen 25 % und 100 % (bei Kl.3 zwischen 50 % und 100 %) darf der Stromfehler und der Fehlwinkel (bei Kl. 3 gibt es keine festgelegten Grenzwerte für den Fehlwinkel) die in der nachfolgenden Tabelle angegeben Werte nicht überschreiten.

Die Bürde muss für alle Klassen einen Leistungsfaktor von 0,8 induktiv und einen Mindestwert von 1 VA besitzen, ausgenommen bei einer Bürde kleiner als 5 VA, bei welcher ein Leistungsfaktor von 1,0 verwendet werden muss.

	Stromfehler					Fehlwinkel ⊿ _F bei				
Klassengenauigkeit	1,2 I _n 1,0 I _n	0,5 I _n	0,2 I _n	0,05 I _n	0,01 I _n	1,2 I _n 1,0 I _n	0,5 I _n	0,2 I _n	0,05 I _n	0,01 I _n
	± %	± %	± %	± %	± %	± min	± min	± min	± min	± min
0,2S	0,2		0,2	0,35	0,75	10		10	15	30
0,2	0,2		0,35	0,75		10		15	30	
0,5S	0,5		0,5	0,75	1,5	30		30	45	90
0,5	0,5		0,75	1,5		30		45	90	
1	1		1,5	3		60		90	180	
3	3	3								

Fehlergrenzwerte der Stromwandler für Schutzzwecke

Bei Bemessungsfrequenz und bei Belastung mit der Bemessungsbürde darf der Stromfehler, der Fehlwinkel und der Gesamtfehler die in der nachfolgenden Tabelle angegeben Werte nicht überschreiten.

Die Bemessungsbürde muss einen Leistungsfaktor von 0,8 induktiv haben, ausgenommen bei einer Bürde kleiner als 5 VA, bei welcher ein Leistungsfaktor von 1,0 verwendet werden muss.

Klassanganguigkeit	Stromfehler ± F _i bei	Fehlwinkel ± F _i bei
	1,0 I _n	1,0 I _n
Klassengenauigkeit	und thermischem Nenn-Dauerstrom	und thermischem Nenn-Dauerstrom
	%	Minuten
5 P	1	60
10 P	3	

Gesamtfehler F_g bei Nenn-Fehlergrenzstrom und Bemessungsbürde Klasse 5P ... \leq 5 % Klasse 10P ... \leq 10 %

Teilentladungen

Teilentladungsanforderungen gelten für Messwandler mit U_m ≥ 7,2 kV.

Teilentladungs-Prüfspannungen und zulässige Pegel für Stromwandler

Art der	Teilentladungs-Prüfspannung (Effektivwert)	Zulässiger Teilentladungspegel ²⁾ pC Art der Isolierung			
Sternpunkterdung	kV	flüssigkeits- oder gasisoliert	Feststoff		
Sternpunkt geerdet ¹⁾	U _m	10	50		
(Erdfehlerfaktor ≤ 1,4)	1,2 U _m / √3	5	20		
Sternpunkt isoliert oder nicht wirksam geerdet ¹⁾ (Erdfehlerfaktor > 1,4)	1,2 U _m	10	50		
	1,2 U _m / √3	5	20		

¹⁾ Wenn die Art der Netzerdung nicht angegeben ist, gelten die Werte für den isolierten oder nicht wirksam geerdeten Sternpunkt.

²⁾ Der zulässige Teilentladungspegel gilt auch für von der Bemessungsfrequenz abweichende Frequenzen.

Bezeichnungen der Stromwandler-Anschlussklemmen

Die Anschlüsse aller Primärwicklungen sind mit "P1" und "P2" bezeichnet, die Anschlüsse aller Sekundärwicklungen werden mit den entsprechenden Kleinbuchstaben "s1" und "s2" bezeichnet.

Leistungsbedarf von Messanordnungen

Beim Einsatz von Stromwandlern werden durch den Anwender folgende zwei Hauptforderungen erhoben:

- hohe Messgenauigkeit im Nennstrombereich
- Schutzfunktion im Überstrombereich

Zur Realisierung dieser Anforderungen ist es notwendig, dass das Leistungsangebot (die Nennscheinleistung) des Stromwandlers, weitestgehend an den tatsächlichen Leistungsbedarf der Messanordnung angepasst wird. Zur Ermittlung des tatsächlichen Leistungsbedarfs müssen, neben dem Eigenleistungsbedarf der angeschlossenen Messgeräte, auch die Leitungsverluste der an den Sekundärkreis des Wandlers angeschlossenen Messleitungen berücksichtigt werden.

Der tatsächliche Leistungsbedarf der angeschlossenen Messgeräte ist den jeweiligen Datenblättern zu entnehmen.

Zu beachten:

Ist der Leistungsbedarf der Messanordnung wesentlich geringer als das Leistungsangebot des Stromwandlers, so verliert dieser im Überstrombereich seine Schutzfunktion. Im Extremfall kann dies zu einem Defekt der angeschlossenen Messgeräte führen.

Eigenverbrauch von Kupfer-Leitungen

$$P_{\rm V} = \frac{I_{\rm s}^2 \times 2 \times l}{A_{\rm cu} \times 56} {\rm VA}$$

= Sekundär Bemessungs-Stromstärke [A]

I = einfache Leitungsrange

A_{cu} = Leitungsquerschnitt in mm²

P_v = Verlustleistung der Anschlussleitungen

Hinweis: Bei gemeinsamer Drehstrom-Rückleitung gelten halbe Werte von Pv

Tabelle für Werte bezogen auf 5 A

Nennquerschnitt	1 m	2 m	3 m	4 m	5 m	6 m	7 m	8 m	9 m	10 m
2,5 mm ²	0,36	0,71	1,07	1,43	1,78	2,14	2,50	2,86	3,21	3,57
4,0 mm ²	0,22	0,45	0,67	0,89	1,12	1,34	1,56	1,79	2,01	2,24
6,0 mm ²	0,15	0,30	0,45	0,60	0,74	0,89	1,04	1,19	1,34	1,49
10,0 mm ²	0,09	0,18	0,27	0,36	0,44	0,54	0,63	0,71	0,80	0,89

Tabelle für Werte bezogen auf 1 A

Nennquerschnitt	10 m	20 m	30 m	40 m	50 m	60 m	70 m	80 m	90 m	100 m
1,0 mm ²	0,36	0,71	1,07	1,43	1,78	2,14	2,50	2,86	3,21	3,57
2,5 mm ²	0,14	0,29	0,43	0,57	0,72	0,86	1,00	1,14	1,29	1,43
4,0 mm ²	0,09	0,18	0,27	0,36	0,45	0,54	0,63	0,71	0,80	0,89
6,0 mm²	0,06	0,12	0,18	0,24	0,30	0,36	0,42	0,48	0,54	0,60
10,0 mm ²	0,04	0,07	0,11	0,14	0,18	0,21	0,25	0,29	0,32	0,36

Spannungswandler - Technische Begriffe

Spannungswandler sind Spezialtransformatoren zur proportionalen Umsetzung von hohen Primärspannungen auf direkt messbare, kleinere Sekundärspannungswerte. Bedingt durch ihren konstruktiven Aufbau, sowie ihr physikalisches Wirkprinzip, wird eine sichere galvanische Trennung zwischen Primärkreis und Messkreis erzielt.

Einpolig isolierte Spannungswandler Einphasiger Spannungswandler für Leiter-Erd-Spannung, bei dem ein Ende der Primärwicklung zur direkten Erdung vorgesehen ist.

Zweipolig isolierte Spannungswandler Spannungswandler für Leiter-Leiter-Spannung, bei dem alle Teile der Primärwicklung einschließlich der Anschlüsse auf einem Pegel entsprechend dem Bemessungsisolationspegels gegen Erde isoliert sind.

Wicklung zur Erdschlusserfassung

Wicklung eines einphasigen Spannungswandlers, die in einem Satz von drei einphasigen Wandlern zum Anschluss im offenen Dreieck vorgesehen ist, um

a) bei Erdschlussbedingungen eine Verlagerungsspannung zu erzeugen

b) Kippschwingungen zu dämpfen (Ferroresonanzen)'

Bitte beachten: Beim Anschluss im offenen Dreieck darf nur bei einem Wandler die Hilfswicklung geerdet werden, da es ansonsten zu einem Kurzschluss kommt.

Primäre + Sekundäre Bemessungsspannung Wert der Primär- bzw. Sekundärspannung, die auf dem Leistungsschild des Wandlers angegeben wird und auf dem sein Betriebsverhalten basiert.

Bemessungsübersetzung

Verhältnis der primären Bemessungsspannung zur sekundären Bemessungsspannung. Die Bemessungsübersetzung eines Spannungswandlers wird auf dem Leistungsschild als ungekürzter Bruch angegeben.

Bürde

Impedanz des Sekundärkreises, ausgedrückt in Ohm mit Angabe des Leistungsfaktors. Hinweis: Die Bürde wird üblicherweise als Scheinleistung in VA ausgedrückt.

Bemessungsbürde

Wert der Bürde, auf dem die Genauigkeitsangaben des Spannungswandlers beruhen.

Bemessungsleistung

Wert der Scheinleistung (in [VA] bei festgelegtem Leistungsfaktor), die der Wandler bei sekundärer Bemessungsspannung und Bemessungsbürde an den Sekundärkreis abgeben kann.

Bemessungsfrequenz

Wert der Frequenz, welcher der Bemessung des Spannungswandlers zugrunde liegt.

Genauigkeitsklasse

Angabe für einen Spannungswandler, dessen Messabweichungen unter vorgeschriebenen Anwendungsbedingungen, innerhalb festgelegter Grenzen liegen.

Fehlwinkel [Δφ]

Winkeldifferenz zwischen dem primären und sekundären Spannungszeiger. Dabei ist die Richtung der Zeiger so gewählt, dass bei einem idealen Stromwandler der Fehlwinkel gleich Null ist.

Spannungsmessabweichung (Übersetzungsfehler) Messabweichungen, die ein Spannungswandler bei der Messung einer Spannung verursacht und die sich daraus ergeben, dass die tatsächliche Übersetzung von der Bemessungs-Übersetzung abweicht.

Die in Prozent ausgedrückte Spannungsmessabweichung wird nach folgender Formel berechnet:

$$\varepsilon u \, [\%] = \frac{k_r \cdot U_s - U_p}{U_p} \cdot 100$$

εu = Spannungsabweichung in % k_r = Bemessungsübersetzung

 U_p = tatsächliche primäre Spannung U_s = tatsächliche sekundäre Spannung, wenn U_p unter Messbedingungen fließt

Höchste Spannung für Betriebsmittel Um Effektivwert (kV) der höchsten Leiter-Leiter-Spannung, für die ein Messwandler im

Hinblick auf seine Isolation bemessen ist.

Bemessungs-Spannungsfaktor [F_V] Multiplikationsfaktor der auf die primäre Bemessungsspannung anzuwenden ist, zur Bestimmung der höchsten Spannung, bei der ein Wandler eine festgelegte Dauer den entsprechenden thermischen Anforderungen und den entsprechenden Anforderungen

an die Messgenauigkeit entsprechen muss.

Bei einpolig isolierten Spannungswandlern liegt der Bemessungs-Spannungsfaktor üblicherweise bei 1,9 · U_N / 8h und bei allen Spannungswandlern bei 1,2 · U_N / dauernd.

Thermische Grenzleistung

Wert der Scheinleistung bei Bemessungsspannung, der an einer Sekundärwicklung entnommen werden kann, ohne die Grenzwerte der Übertemperatur zu überschreiten.

Betrieb von Spannungswandlern Spannungswandler dürfen im Gegensatz zu Stromwandlern niemals

sekundärseitig kurzgeschlossen werden!

Die erdseitige Klemme der Primärwicklung (N) muss im Klemmenkasten wirksam geerdet werden und darf im Betrieb nicht entfernt werden.

Erdung von Sekundärklemmen Gemäß DIN VDE 0141 (01/2000) Absatz 5.3.4, sind Strom- und Spannungswandler für

Nennspannungen ab $U_m = 3.6 \text{ kV}$ sekundärseitig zu erden.

Die Ausführung der Erdungsanschlüsse ist ab der Baureihe 10N vorgeschrieben.

Fehlergrenzwerte für Spannungswandler der Klassen 0,2...3 gemäß **DIN EN 61869, Teil 3**

Bei Bemessungsfrequenz und bei Belastung der Bemessungsbürde zwischen 25 % und 100 % bei einem Leistungsfaktor von cos β = 0,8 (induktiv) darf der Spannungsfehler und der Fehlwinkel die in der nachfolgenden Tabelle angegeben Werte zwischen 80 % und 120 % der Bemessungsspannung nicht überschreiten.

Klassengenauigkeit	Spannungsfehler ϵ_u	Fehlwinkel
Massengenaulgkeit	± %	± min
0,2	0,2	10
0,5	0,5	20
1	1,0	40
3	3,0	-

Fehlergrenzwerte der Spannungswandler für Schutzzwecke

Bei Bemessungsfrequenz und bei Belastung der Bemessungsbürde zwischen 25 % und 100 % bei einem Leistungsfaktor von cos β = 0,8 (induktiv) darf der Spannungsfehler und der Fehlwinkel die in der nachfolgenden Tabelle angegeben Werte bei 5 % der Bemessungsspannung und bei der Bemessungsspannung multipliziert mit dem Bemessungsspannungsfaktor nicht überschreiten.

Bei 2 % der Bemessungsspannung sind die Grenzwerte des Spannungsfehlers und des Fehlwinkels doppelt so hoch wie nachfolgend angegeben.

Klassengenauigkeit	Spannungsfehler ε _u	Fehlwinkel
	± %	± min
3P	3,0	120
6P	6,0	240

Teilentladungen

Teilentladungsanforderungen gelten für Messwandler mit U_m ≥ 7,2 kV.

Teilentladungs-Prüfspannungen und zulässige Pegel für Spannungswandler

Art der	Art des	Teilentladungs-Prüfspannung (Effektivwert)	Zulässiger Teilentladungspegel ²⁾ pC			
Sternpunkterdung	Spannungs-		Art der Isolierung			
Ctompainteraang	wandlers	kV	flüssigkeits- oder gasisoliert	Feststoff		
Sternpunkt geerdet ¹⁾ (Erdfehlerfaktor ≤ 1,4)	einpolig isoliert	$U_{\rm m}$ 1,2 $U_{\rm m}$ / $\sqrt{3}$	10 5	50 20		
Sternpunkt geerdet ¹⁾ (Erdfehlerfaktor ≤ 1,4)	zweipolig isoliert	1,2 U _m	5	20		
Sternpunkt isoliert oder nicht wirksam geerdet ¹⁾ (Erdfehlerfaktor > 1,4)	einpolig isoliert	1,2 U _m 1,2 U _m / √3	10 5	50 20		
Sternpunkt isoliert oder nicht wirksam geerdet ¹⁾ (Erdfehlerfaktor > 1,4)	zweipolig isoliert	1,2 U _m	5	20		

¹⁾ Wenn die Art der Netzerdung nicht angegeben ist, gelten die Werte für den isolierten oder nicht wirksam geerdeten Sternpunkt.

Bezeichnungen der Spannungswandler-Anschlussklemmen

Die Anschlüsse der Primärwicklungen sind mit "A", "B" und "N" bezeichnet, die Anschlüsse der Sekundärwicklungen werden mit den entsprechenden Kleinbuchstaben "a", "b" und "n" bezeichnet.

Die Buchstaben "A" und "B" kennzeichnen die vollisolierten Anschlüsse und der Buchstabe "N" bezeichnet einen Anschluss, der für die Erdung vorgesehen ist und dessen Isolierung geringer ist als die der anderen Anschlüsse.

Die Kennzeichnung "da" und "dn" bezeichnet die Anschlüsse der Wicklung zur Erdschlusserfassung.

²⁾ Der zulässige Teilentladungspegel gilt auch für von der Bemessungsfrequenz abweichende Frequenzen.

Stützerstromwandler für Innenraumanwendung

7,2 kV und 12 kV – Schmale Bauform gemäß DIN 42600, Teil 8 mit PTB-Bauartzulassung und Beglaubigung erhältlich

Beschreibung:

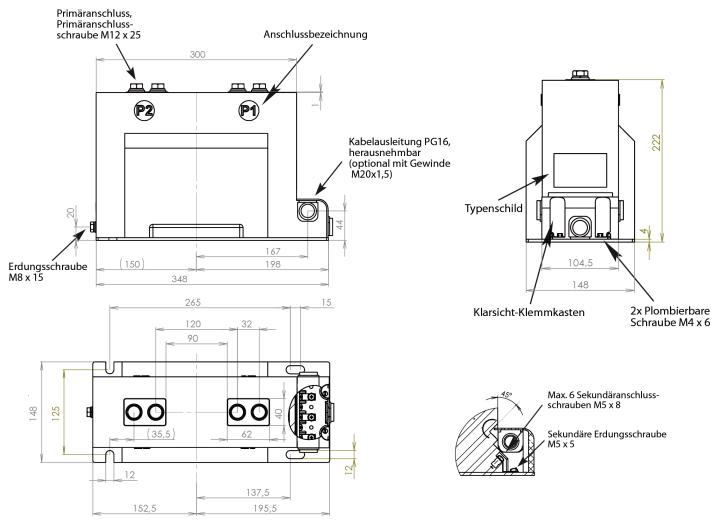
Mittelspannungs-Stromwandler für Innenraumanwendungen, die einen oder mehrere netzseitige Primärströme proportional und phasengetreu in genormte Sekundärströme übertragen.

Diese sind gießharzisoliert und dienen neben ihrer primären Funktion als Stromwandler auch als Sammelschienenhalter.

Einsetzbar sind diese Stromwandler sowohl für Mess- als auch für Schutzzwecke; optional nach dem Konformitätsbewertungsverfahren zur Verrechnung zugelassen.

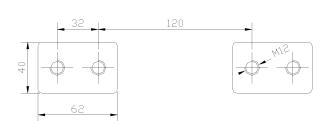
Die Mittelspannungs-Stromwandler sind auch als Mehrkern-Wandler erhältlich. Die maximal mögliche Anzahl an Kernen ist abhängig von der jeweils gewählten Leistung und Genauigkeitsklasse, die das Kernvolumen ergeben.

Optional sind die Stromwandler primär oder sekundär umschaltbar erhältlich.

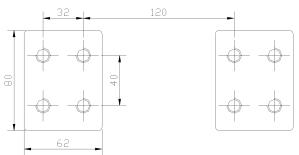

Bei den primär umschaltbaren Stromwandlern besteht die Möglichkeit je nach Anschluss der Primäranschlüsse durch Parallel- oder Serienschaltung zwischen zwei primären Nennströmen zu wählen. Die primärseitigen Nennströme können nur im Verhältnis 1:2 realisiert werden.

Bei den sekundär umschaltbaren Stromwandlern wird die Umschaltung durch einen oder mehrere Abgriffe ermöglicht. Die primärseitigen Nennströme lassen sich dadurch auch in verschiedenen Verhältnissen realisieren.

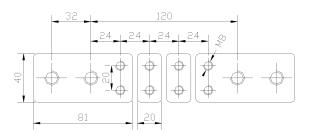
Technische Daten:

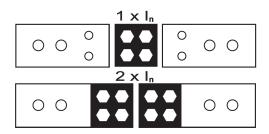

	(E)CTS12M11-T	(E)CTS12M11U-T	(E)CTS12M11-T
	(E)C1312W11-1	(primär umschaltbar)	(sekundär umschaltbar)
Max. Betriebsspannung U _m :	12 kV	12 kV	12 kV
Bemessungs- Stehwechselspannung:	28 kV	28 kV	28 kV
Bemessung-Stehblitzstoßspannung:	75 kV	75 kV	75 kV
Therm. Nenndauerstrom I _{cth} :	1,2 x I _N	1,2 x I _N	1,2 x I _N
Therm. Nennkurzzeitstrom I _{th} :	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.
Bemessungs-Stoßstrom I _{dyn} :	2,5 x I _{th}	2,5 x I _{th}	2,5 x I _{th}
Primärer Nennstrom:	5 A – 3000 A	2x5 A – 2x600 A	5 A – 3000 A
Sekundärer Nennstrom:	5 A oder 1 A	5 A oder 1 A	5 A oder 1 A
Nenn-Frequenz:	50 / 60 Hz	50 / 60 Hz	50 / 60 Hz
Messwandler-Genauigkeitsklassen:	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S
Optional zur Verrechnung:	Ja	Ja	Ja
Schutzwandler-Genauigkeitsklassen	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30
Kapazitiver Spannungsabgriff:	Optional verfügbar	Optional verfügbar	Optional verfügbar
Isolierstoffklasse:	E	E	E
Umbruchfestigkeit:	5000 Nm	5000 Nm	5000 Nm
Gewicht:	ca. 22 kg	ca. 22 kg	ca. 22 kg

Technische Änderungen vorbehalten



Primäranschlüsse:


bis 1250 A:


< 1250 A bis 3000 A:

Primär umschaltbar bis 1200 A:

Anschlussbelegung – Primärumschaltung:

Stützerstromwandler für Innenraumanwendung

7,2 kV und 12 kV – Um 55mm verlängerte Bauform für erhöhte Anforderungen mit PTB-Bauartzulassung und Beglaubigung erhältlich

Beschreibung:

Mittelspannungs-Stromwandler für Innenraumanwendungen, die einen oder mehrere netzseitige Primärströme proportional und phasengetreu in genormte Sekundärströme übertragen.

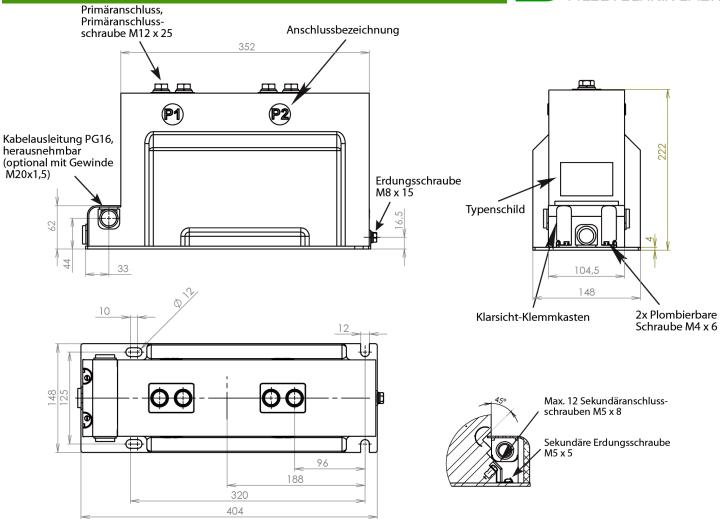
Diese sind gießharzisoliert und dienen neben ihrer primären Funktion als Stromwandler auch als Sammelschienenhalter.

Einsetzbar sind diese Stromwandler sowohl für Mess- als auch für Schutzzwecke; optional nach dem Konformitätsbewertungsverfahren zur Verrechnung zugelassen.

Die Mittelspannungs-Stromwandler sind auch als Mehrkern-Wandler erhältlich. Die maximal mögliche Anzahl an Kernen ist abhängig von der jeweils gewählten Leistung und Genauigkeitsklasse, die das Kernvolumen ergeben.

Optional sind die Stromwandler primär oder sekundär umschaltbar erhältlich.

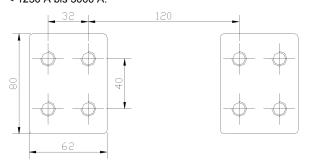
Bei den primär umschaltbaren Stromwandlern besteht die Möglichkeit je nach Anschluss der Primäranschlüsse durch Parallel- oder Serienschaltung zwischen zwei primären Nennströmen zu wählen. Die primärseitigen Nennströme können nur im Verhältnis 1:2 realisiert werden.


Bei den sekundär umschaltbaren Stromwandlern wird die Umschaltung durch einen oder mehrere Abgriffe ermöglicht. Die primärseitigen Nennströme lassen sich dadurch auch in verschiedenen Verhältnissen realisieren.

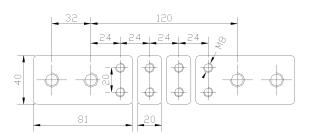
Technische Daten:

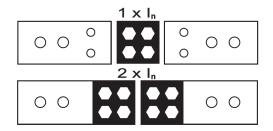
	(E)CTS12L11-T	(E)CTS12L11U-T (primär umschaltbar)	(E)CTS12L11-T (sekundär umschaltbar)
Max. Betriebsspannung U _m :	12 kV	12 kV	12 kV
Bemessungs- Stehwechselspannung:	28 kV	28 kV	28 kV
Bemessung-Stehblitzstoßspannung:	75 kV	75 kV	75 kV
Therm. Nenndauerstrom I _{cth} :	1,2 x I _N	1,2 x I _N	1,2 x I _N
Therm. Nennkurzzeitstrom I _{th} :	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.
Bemessungs-Stoßstrom I _{dyn} :	$2,5 \times I_{th}$	2,5 x I _{th}	2,5 x I _{th}
Primärer Nennstrom:	5 A – 3000 A	2x5 A – 2x600 A	5 A – 3000 A
Sekundärer Nennstrom:	5 A oder 1 A	5 A oder 1 A	5 A oder 1 A
Nenn-Frequenz:	50 / 60 Hz	50 / 60 Hz	50 / 60 Hz
Messwandler-Genauigkeitsklassen:	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S
Optional zur Verrechnung:	Ja	Ja	Ja
Schutzwandler-Genauigkeitsklassen	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30
Isolierstoffklasse:	E	E	E
Umbruchfestigkeit:	5000 Nm	5000 Nm	5000 Nm
Gewicht:	ca. 35 kg	ca. 35 kg	ca. 35 kg

Technische Änderungen vorbehalten



Primäranschlüsse:


bis 1250 A:


< 1250 A bis 3000 A:

Primär umschaltbar bis 1200 A:

Anschlussbelegung – Primärumschaltung:

Stützerstromwandler für Innenraumanwendung

7,2 kV und 12 kV – Um 135mm verlängerte Bauform für erhöhte Anforderungen und bis zu 6 Mess- oder Schutzkernen

Beschreibung:

Mittelspannungs-Stromwandler für Innenraumanwendungen, die einen oder mehrere netzseitige Primärströme proportional und phasengetreu in genormte Sekundärströme übertragen.

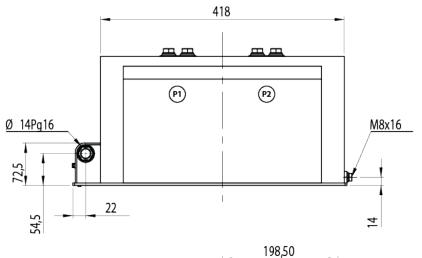
Diese sind gießharzisoliert und dienen neben ihrer primären Funktion als Stromwandler auch als Sammelschienenhalter.

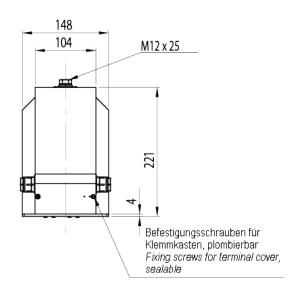
Einsetzbar sind diese Stromwandler sowohl für Mess- als auch für Schutzzwecke.

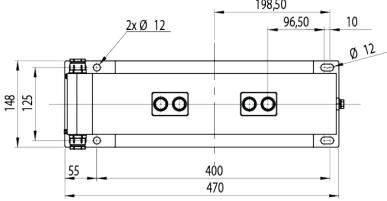
Die Mittelspannungs-Stromwandler sind auch als Mehrkern-Wandler erhältlich. Die maximal mögliche Anzahl an Kernen ist abhängig von der jeweils gewählten Leistung und Genauigkeitsklasse, die das Kernvolumen ergeben.

Optional sind die Stromwandler primär oder sekundär umschaltbar erhältlich.

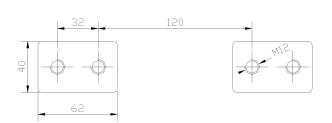
Bei den primär umschaltbaren Stromwandlern besteht die Möglichkeit je nach Anschluss der Primäranschlüsse durch Parallel- oder Serienschaltung zwischen zwei primären Nennströmen zu wählen. Die primärseitigen Nennströme können nur im Verhältnis 1:2 realisiert werden.

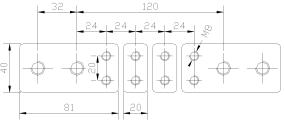

Bei den sekundär umschaltbaren Stromwandlern wird die Umschaltung durch einen oder mehrere Abgriffe ermöglicht. Die primärseitigen Nennströme lassen sich dadurch auch in verschiedenen Verhältnissen realisieren.


Technische Daten:

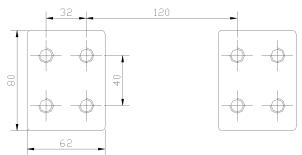

	CTS12XL11-T	CTS12XL11U-T (primär umschaltbar)	CTS12XL11-T (sekundär umschaltbar)
Max. Betriebsspannung U _m :	12 kV	12 kV	12 kV
Bemessungs- Stehwechselspannung:	28 kV	28 kV	28 kV
Bemessung-Stehblitzstoßspannung:	75 kV	75 kV	75 kV
Therm. Nenndauerstrom I _{cth} :	1,2 x I _N	1,2 x I _N	1,2 x I _N
Therm. Nennkurzzeitstrom I _{th} :	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.
Bemessungs-Stoßstrom I _{dyn} :	2,5 x I _{th}	2,5 x I _{th}	2,5 x I _{th}
Primärer Nennstrom:	5 A – 3000 A	2x5 A – 2x600 A	5 A – 3000 A
Sekundärer Nennstrom:	5 A oder 1 A	5 A oder 1 A	5 A oder 1 A
Nenn-Frequenz:	50 / 60 Hz	50 / 60 Hz	50 / 60 Hz
Messwandler-Genauigkeitsklassen:	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S
Optional zur Verrechnung:	Nein	Nein	Nein
Schutzwandler-Genauigkeitsklassen	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30
Isolierstoffklasse:	E	Е	Е
Umbruchfestigkeit:	5000 Nm	5000 Nm	5000 Nm
Gewicht:	ca. 45 kg	ca. 45 kg	ca. 45 kg

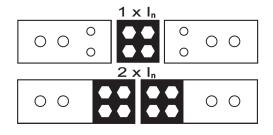
Technische Änderungen vorbehalten





Primäranschlüsse:


bis 1250 A:


Primär umschaltbar bis 1200 A:

< 1250 A bis 3000 A:

Anschlussbelegung – Primärumschaltung:

Stützerstromwandler für Innenraumanwendung

7,2 kV und 12 kV – Schmale Bauform gemäß DIN 42600, Teil 8 mit seitlich hochgezogenen Barrieren

Beschreibung:

Mittelspannungs-Stromwandler für Innenraumanwendungen, die einen oder mehrere netzseitige Primärströme proportional und phasengetreu in genormte Sekundärströme übertragen.

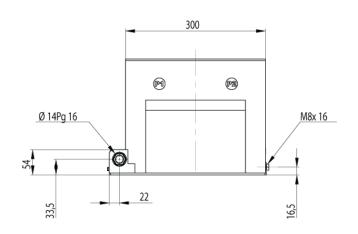
Diese sind gießharzisoliert und dienen neben ihrer primären Funktion als Stromwandler auch als Sammelschienenhalter.

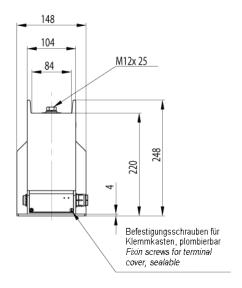
Einsetzbar sind diese Stromwandler sowohl für Mess- als auch für Schutzzwecke.

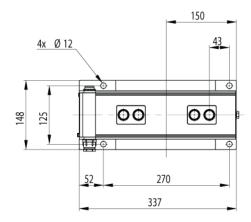
Die Mittelspannungs-Stromwandler sind auch als Mehrkern-Wandler erhältlich. Die maximal mögliche Anzahl an Kernen ist abhängig von der jeweils gewählten Leistung und Genauigkeitsklasse, die das Kernvolumen ergeben.

Optional sind die Stromwandler primär oder sekundär umschaltbar erhältlich.

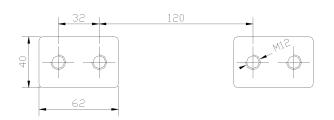
Bei den primär umschaltbaren Stromwandlern besteht die Möglichkeit je nach Anschluss der Primäranschlüsse durch Parallel- oder Serienschaltung zwischen zwei primären Nennströmen zu wählen. Die primärseitigen Nennströme können nur im Verhältnis 1:2 realisiert werden.

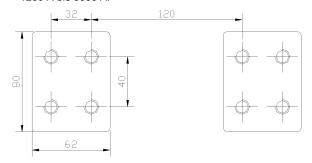

Bei den sekundär umschaltbaren Stromwandlern wird die Umschaltung durch einen oder mehrere Abgriffe ermöglicht. Die primärseitigen Nennströme lassen sich dadurch auch in verschiedenen Verhältnissen realisieren.


Technische Daten:

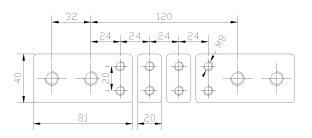

	(E)CTS12M11B-T	(E)CTS12M11BU-T (primär umschaltbar)	(E)CTS12M11B-T (sekundär umschaltbar)
Max. Betriebsspannung U _m :	12 kV	12 kV	12 kV
Bemessungs- Stehwechselspannung:	28 kV	28 kV	28 kV
Bemessung-Stehblitzstoßspannung:	75 kV	75 kV	75 kV
Therm. Nenndauerstrom I _{cth} :	1,2 x I _N	1,2 x I _N	1,2 x I _N
Therm. Nennkurzzeitstrom I _{th} :	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.
Bemessungs-Stoßstrom I _{dyn} :	2,5 x I _{th}	2,5 x I _{th}	2,5 x I _{th}
Primärer Nennstrom:	5 A – 3000 A	2x5 A – 2x600 A	5 A – 3000 A
Sekundärer Nennstrom:	5 A oder 1 A	5 A oder 1 A	5 A oder 1 A
Nenn-Frequenz:	50 / 60 Hz	50 / 60 Hz	50 / 60 Hz
Messwandler-Genauigkeitsklassen:	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S
Optional zur Verrechnung:	Nein	Nein	Nein
Schutzwandler-Genauigkeitsklassen	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30
Isolierstoffklasse:	E	E	Е
Umbruchfestigkeit:	5000 Nm	5000 Nm	5000 Nm
Gewicht:	ca. 23 kg	ca. 23 kg	ca. 23 kg

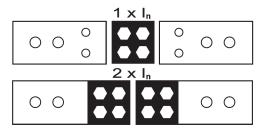
Technische Änderungen vorbehalten



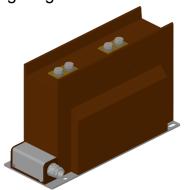


Primäranschlüsse:


bis 1250 A:


< 1250 A bis 3000 A:

Primär umschaltbar bis 1200 A:


Anschlussbelegung – Primärumschaltung:

Stützerstromwandler für Innenraumanwendung

7,2 kV und 12 kV – Um 55mm verlängerte Bauform für erhöhte Anforderungen mit seitlich hochgezogenen Barrieren

Beschreibung:

Mittelspannungs-Stromwandler für Innenraumanwendungen, die einen oder mehrere netzseitige Primärströme proportional und phasengetreu in genormte Sekundärströme übertragen.

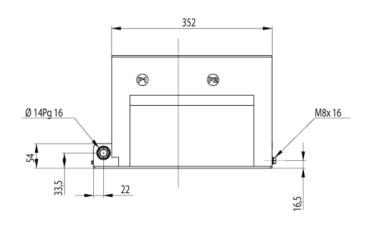
Diese sind gießharzisoliert und dienen neben ihrer primären Funktion als Stromwandler auch als Sammelschienenhalter.

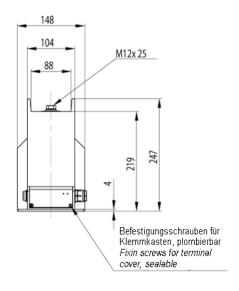
Einsetzbar sind diese Stromwandler sowohl für Mess- als auch für Schutzzwecke.

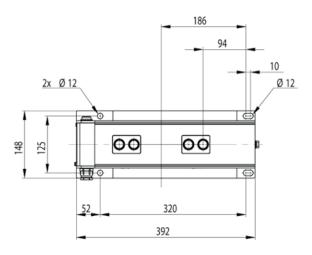
Die Mittelspannungs-Stromwandler sind auch als Mehrkern-Wandler erhältlich. Die maximal mögliche Anzahl an Kernen ist abhängig von der jeweils gewählten Leistung und Genauigkeitsklasse, die das Kernvolumen ergeben.

Optional sind die Stromwandler primär oder sekundär umschaltbar erhältlich.

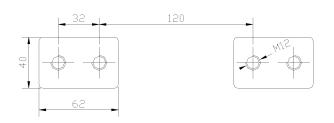
Bei den primär umschaltbaren Stromwandlern besteht die Möglichkeit je nach Anschluss der Primäranschlüsse durch Parallel- oder Serienschaltung zwischen zwei primären Nennströmen zu wählen. Die primärseitigen Nennströme können nur im Verhältnis 1:2 realisiert werden.

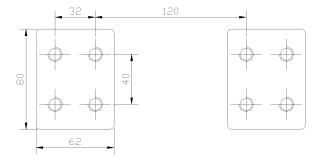

Bei den sekundär umschaltbaren Stromwandlern wird die Umschaltung durch einen oder mehrere Abgriffe ermöglicht. Die primärseitigen Nennströme lassen sich dadurch auch in verschiedenen Verhältnissen realisieren.


Technische Daten:

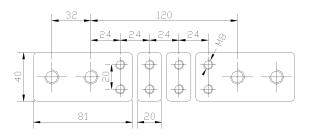

	(E)CTS12L11B-T	(E)CTS12L11BU-T (primär umschaltbar)	(E)CTS12L11B-T (sekundär umschaltbar)
Max. Betriebsspannung U _m :	12 kV	12 kV	12 kV
Bemessungs- Stehwechselspannung:	28 kV	28 kV	28 kV
Bemessung-Stehblitzstoßspannung:	75 kV	75 kV	75 kV
Therm. Nenndauerstrom I _{cth} :	1,2 x I _N	1,2 x I _N	1,2 x I _N
Therm. Nennkurzzeitstrom I _{th} :	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.
Bemessungs-Stoßstrom I _{dyn} :	2,5 x I _{th}	2,5 x I _{th}	2,5 x I _{th}
Primärer Nennstrom:	5 A – 3000 A	2x5 A – 2x600 A	5 A – 3000 A
Sekundärer Nennstrom:	5 A oder 1 A	5 A oder 1 A	5 A oder 1 A
Nenn-Frequenz:	50 / 60 Hz	50 / 60 Hz	50 / 60 Hz
Messwandler-Genauigkeitsklassen:	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S
Optional zur Verrechnung:	Nein	Nein	Nein
Schutzwandler-Genauigkeitsklassen	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30
Isolierstoffklasse:	E	Е	Е
Umbruchfestigkeit:	5000 Nm	5000 Nm	5000 Nm
Gewicht:	ca. 36 kg	ca. 36 kg	ca. 36 kg

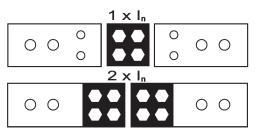
Technische Änderungen vorbehalten





Primäranschlüsse:


bis 1250 A:


< 1250 A bis 3000 A:

Primär umschaltbar bis 1200 A:

$\label{lem:lemma$

Stützerstromwandler für Innenraumanwendung

24 kV – Schmale Bauform gemäß DIN 42600, Teil 8 mit PTB-Bauartzulassung und Beglaubigung erhältlich

Beschreibung:

Mittelspannungs-Stromwandler für Innenraumanwendungen, die einen oder mehrere netzseitige Primärströme proportional und phasengetreu in genormte Sekundärströme übertragen.

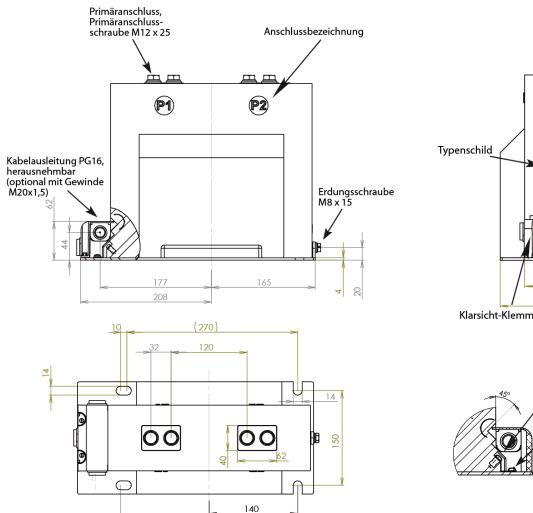
Diese sind gießharzisoliert und dienen neben ihrer primären Funktion als Stromwandler auch als Sammelschienenhalter.

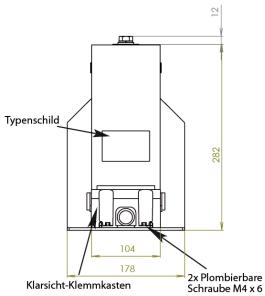
Einsetzbar sind diese Stromwandler sowohl für Mess- als auch für Schutzzwecke; optional nach dem Konformitätsbewertungsverfahren zur Verrechnung zugelassen.

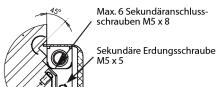
Die Mittelspannungs-Stromwandler sind auch als Mehrkern-Wandler lieferbar. Die maximal mögliche Anzahl an Kernen ist abhängig von der jeweils gewählten Leistung und Genauigkeitsklasse, die das Kernvolumen ergeben.

Optional sind die Stromwandler primär oder sekundär umschaltbar erhältlich.

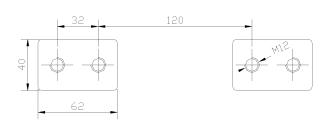
Bei den primär umschaltbaren Stromwandlern besteht die Möglichkeit je nach Anschluss der Primäranschlüsse durch Parallel- oder Serienschaltung zwischen zwei primären Nennströmen zu wählen. Die primärseitigen Nennströme können nur im Verhältnis 1:2 realisiert werden.

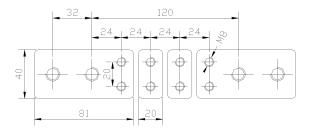

Bei den sekundär umschaltbaren Stromwandlern wird die Umschaltung durch einen oder mehrere Abgriffe ermöglicht. Die primärseitigen Nennströme lassen sich dadurch auch in verschiedenen Verhältnissen realisieren.


Technische Daten:

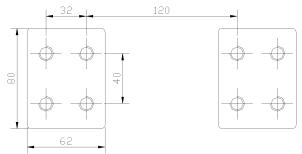

	(E)CTS24M32-T	(E)CTS24M132U-T (primär umschaltbar)	(E)CTS12M11-T (sekundär umschaltbar)
Max. Betriebsspannung U _m :	24 kV	24 kV	24 kV
Bemessungs- Stehwechselspannung:	50 kV	50 kV	50 kV
Bemessung-Stehblitzstoßspannung:	125 kV	125 kV	125 kV
Therm. Nenndauerstrom I _{cth} :	1,2 x I _N	1,2 x I _N	1,2 x I _N
Therm. Nennkurzzeitstrom I _{th} :	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.
Bemessungs-Stoßstrom I _{dyn} :	2,5 x I _{th}	2,5 x I _{th}	2,5 x I _{th}
Primärer Nennstrom:	5 A – 1600 A	2x5 A – 2x600 A	5 A – 1600 A
Sekundärer Nennstrom:	5 A oder 1 A	5 A oder 1 A	5 A oder 1 A
Nenn-Frequenz:	50 / 60 Hz	50 / 60 Hz	50 / 60 Hz
Messwandler-Genauigkeitsklassen:	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S
Optional zur Verrechnung:	Ja	Ja	Ja
Schutzwandler-Genauigkeitsklassen	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30
Kapazitiver Spannungsabgriff:	Optional verfügbar	Optional verfügbar	Optional verfügbar
Isolierstoffklasse:	E	E	E
Umbruchfestigkeit:	5000 Nm	5000 Nm	5000 Nm
Gewicht:	ca. 28 kg	ca. 28 kg	ca. 28 kg

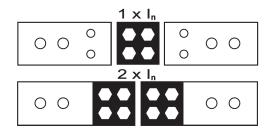
Technische Änderungen vorbehalten



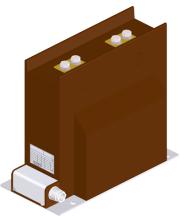


Primäranschlüsse:


bis 1250 A:


Primär umschaltbar bis 1200 A:

< 1250 A bis 3000 A:


Anschlussbelegung – Primärumschaltung:

Stützerstromwandler für Innenraumanwendung

24 kV – Schmale Bauform gemäß DIN 42600, Teil 8 mit seitlich hochgezogenen Barrieren

Beschreibung:

Mittelspannungs-Stromwandler für Innenraumanwendungen, die einen oder mehrere netzseitige Primärströme proportional und phasengetreu in genormte Sekundärströme übertragen.

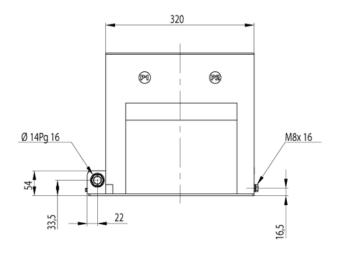
Diese sind gießharzisoliert und dienen neben ihrer primären Funktion als Stromwandler auch als Sammelschienenhalter.

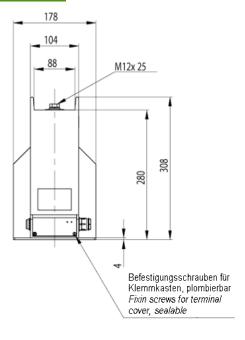
Einsetzbar sind diese Stromwandler sowohl für Mess- als auch für Schutzzwecke.

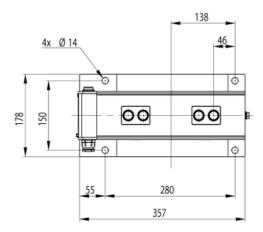
Die Mittelspannungs-Stromwandler sind auch als Mehrkern-Wandler lieferbar. Die maximal mögliche Anzahl an Kernen ist abhängig von der jeweils gewählten Leistung und Genauigkeitsklasse, die das Kernvolumen ergeben.

Optional sind die Stromwandler primär oder sekundär umschaltbar erhältlich.

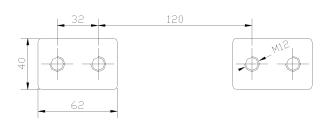
Bei den primär umschaltbaren Stromwandlern besteht die Möglichkeit je nach Anschluss der Primäranschlüsse durch Parallel- oder Serienschaltung zwischen zwei primären Nennströmen zu wählen. Die primärseitigen Nennströme können nur im Verhältnis 1:2 realisiert werden.

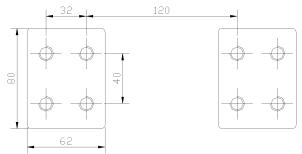

Bei den sekundär umschaltbaren Stromwandlern wird die Umschaltung durch einen oder mehrere Abgriffe ermöglicht. Die primärseitigen Nennströme lassen sich dadurch auch in verschiedenen Verhältnissen realisieren.


Technische Daten:

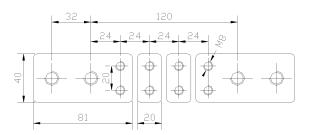

(E)CTS24M32B-T	(E)CTS24M132BU-T (primär umschaltbar)	(E)CTS12M11B-T (sekundär umschaltbar)
24 kV	24 kV	24 kV
50 kV	50 kV	50 kV
125 kV	125 kV	125 kV
1,2 x I _N	1,2 x I _N	1,2 x I _N
100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.
2,5 x I _{th}	2,5 x I _{th}	2,5 x I _{th}
5 A – 1600 A	2x5 A – 2x600 A	5 A – 1600 A
5 A oder 1 A	5 A oder 1 A	5 A oder 1 A
50 / 60 Hz	50 / 60 Hz	50 / 60 Hz
1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5\$; 0,2; 0,2\$
Nein	Nein	Nein
5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30
E	Е	Е
5000 Nm	5000 Nm	5000 Nm
ca. 29 kg	ca. 29 kg	ca. 29 kg
	24 kV 50 kV 125 kV 1,2 x I _N 100 x I _N , 1 Sek.; max. 40 kA, 1 Sek. 2,5 x I _{th} 5 A - 1600 A 5 A oder 1 A 50 / 60 Hz 1; 0,5; 0,5S; 0,2; 0,2S Nein 5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30 E 5000 Nm	(primär umschaltbar) 24 kV 50 kV 125 kV 1,2 x l _N 100 x l _N , 1 Sek.; max. 40 kA, 1 Sek. 2,5 x l _{th} 5 A - 1600 A 5 A oder 1 A 50 / 60 Hz 1; 0,5; 0,5S; 0,2; 0,2S Nein 5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30 E 50 / 60 Nm (primär umschaltbar) 24 kV 24 kV 125 kV 125 kV 100 x l _N , 1 Sek.; max. 40 kA, 1 Sek. 2,5 x l _{th} 2,5 x l _{th} 2,5 x l _{th} 2,5 x l _{th} 3 A oder 1 A 5 O / 60 Hz 1; 0,5; 0,5S; 0,2; 0,2S Nein SP5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30 E E 5000 Nm

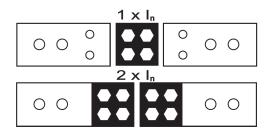
Technische Änderungen vorbehalten





Primäranschlüsse:


bis 1250 A:


< 1250 A bis 3000 A:

Primär umschaltbar bis 1200 A:

Anschlussbelegung – Primärumschaltung:

Stützerstromwandler für Innenraumanwendung

36 kV

mit PTB-Bauartzulassung und Beglaubigung erhältlich

Beschreibung:

Mittelspannungs-Stromwandler für Innenraumanwendungen, die einen oder mehrere netzseitige Primärströme proportional und phasengetreu in genormte Sekundärströme übertragen.

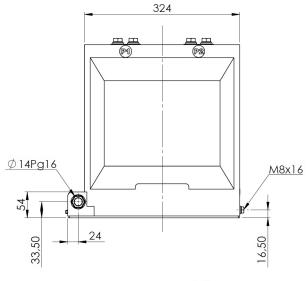
Diese sind gießharzisoliert und dienen neben ihrer primären Funktion als Stromwandler auch als Sammelschienenhalter.

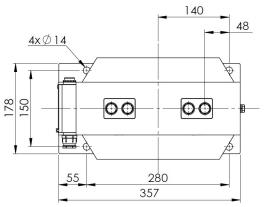
Einsetzbar sind diese Stromwandler sowohl für Mess- als auch für Schutzzwecke; optional nach dem Konformitätsbewertungsverfahren zur Verrechnung zugelassen.

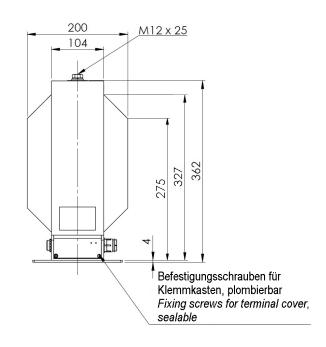
Die Mittelspannungs-Stromwandler sind auch als Mehrkern-Wandler lieferbar. Die maximal mögliche Anzahl an Kernen ist abhängig von der jeweils gewählten Leistung und Genauigkeitsklasse, die das Kernvolumen ergeben.

Optional sind die Stromwandler primär oder sekundär umschaltbar erhältlich.

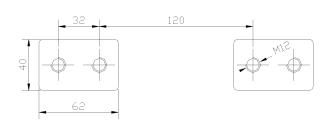
Bei den primär umschaltbaren Stromwandlern besteht die Möglichkeit je nach Anschluss der Primäranschlüsse durch Parallel- oder Serienschaltung zwischen zwei primären Nennströmen zu wählen. Die primärseitigen Nennströme können nur im Verhältnis 1:2 realisiert werden.

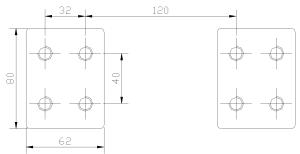

Bei den sekundär umschaltbaren Stromwandlern wird die Umschaltung durch einen oder mehrere Abgriffe ermöglicht. Die primärseitigen Nennströme lassen sich dadurch auch in verschiedenen Verhältnissen realisieren.


Technische Daten:

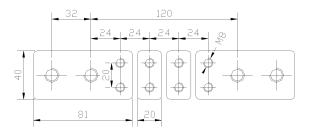

	(E)CTS36L43-T	(E)CTS36L43U-T (primär umschaltbar)	(E)CTS36L43-T (sekundär umschaltbar)
Max. Betriebsspannung U _m :	36 kV	36 kV	36 kV
Bemessungs- Stehwechselspannung:	70 kV	70 kV	70 kV
Bemessung-Stehblitzstoßspannung:	170 kV	170 kV	170 kV
Therm. Nenndauerstrom I _{cth} :	1,2 x I _N	1,2 x I _N	1,2 x I _N
Therm. Nennkurzzeitstrom I _{th} :	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.	100 x I _N , 1 Sek.; max. 40 kA, 1 Sek.
Bemessungs-Stoßstrom I _{dyn} :	2,5 x I _{th}	2,5 x I _{th}	2,5 x I _{th}
Primärer Nennstrom:	5 A – 600 A	2x5 A – 2x300 A	5 A – 600 A
Sekundärer Nennstrom:	5 A oder 1 A	5 A oder 1 A	5 A oder 1 A
Nenn-Frequenz:	50 / 60 Hz	50 / 60 Hz	50 / 60 Hz
Messwandler-Genauigkeitsklassen:	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S	1; 0,5; 0,5S; 0,2; 0,2S
Optional zur Verrechnung:	Ja	Ja	Ja
Schutzwandler-Genauigkeitsklassen	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30	5P5; 5P10; 5P20; 5P30; 10P5; 10P10; 10P20; 10P30
Isolierstoffklasse:	E	E	Е
Umbruchfestigkeit:	5000 Nm	5000 Nm	5000 Nm
Gewicht:	ca. 51 kg	ca. 51 kg	ca. 51 kg

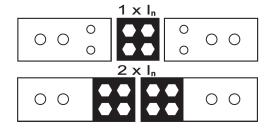
Technische Änderungen vorbehalten





Primäranschlüsse:


bis 1250 A:


< 1250 A bis 3000 A:

Primär umschaltbar bis 1200 A:

Anschlussbelegung – Primärumschaltung:

Einpolig isolierter Spannungswandler für Innenraumanwendung

7,2 kV und 12 kV – Schmale Bauform gemäß DIN 42600, Teil 9 mit PTB-Bauartzulassung und Beglaubigung erhältlich

Beschreibung:

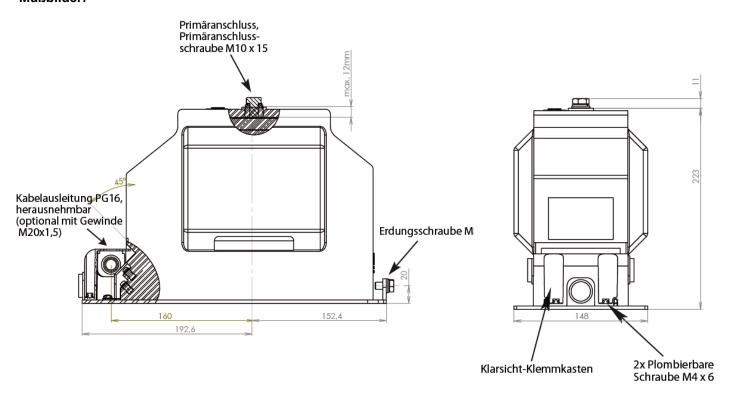
Mittelspannungs-Spannungswandler für Innenraumanwendungen sind gießharzisoliert und können einen oder mehrere netzseitige Primärspannungen proportional und phasengetreu in genormte Sekundärspannungen übertragen.

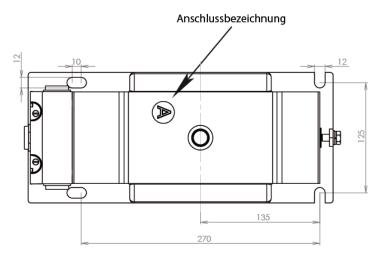
Einsetzbar sind diese Spannungswandler sowohl für Mess- als auch für Schutzzwecke und können optional nach dem Konformitätsbewertungsverfahren zur Verrechnung zugelassen werden.

Die Mittelspannungs-Spannungswandler sind auf Wunsch mit zwei Wicklungen erhältlich. Die maximal mögliche Anzahl an Wicklungen ist abhängig von der jeweils gewählten Leistung und Genauigkeitsklasse

Bei den einpolig isolierten Spannungswandlern besteht zudem die Möglichkeit, diese mit einer zusätzlichen Wicklung zur Erdschlusserfassung auszuführen.

Optional können die Spannungswandler mittels einer Sekundäranzapfung für zwei primäre Bemessungsspannungen gefertigt werden


Ebenfalls besteht die Möglichkeit die Spannungswandler des Typs (E)VTS12M11-T mit einer aufgeschraubten oder mit einer in der Bauform integrierten Primärsicherung (Typ: VTS12M11F-T) zu erhalten.


Technische Daten:

	(E)VTS12M11-T
Max. Betriebsspannung U _m :	12 kV
Bemessungs-Stehwechselspannung:	28 kV
Bemessung-Stehblitzstoßspannung:	75 kV
Bemessungs-Spannungsfaktor:	1,9 x Un / 8h
Primäre Bemessungsspannung U _{PN}	3.000/√3 V bis 11.000/√3 V
Sekundäre Bemessungsspannung U _{SN}	100/√3 V oder 110/√3 V
Sekundäre Bemessungsspannung der Erdschlusswicklungen (da-dn)	100/3 V oder 110/3 V
Nennleistung in Klasse	max. 25VA in Kl.0,2 max. 75VA in Kl.0,5 max. 150VA in Kl.1
Nenn-Frequenz:	50 / 60 Hz
Optional zur Verrechnung:	Ja
Isolierstoffklasse:	E
Gewicht:	ca. 23 kg

Technische Änderungen vorbehalten

Zweipolig isolierter Spannungswandler für Innenraumanwendung

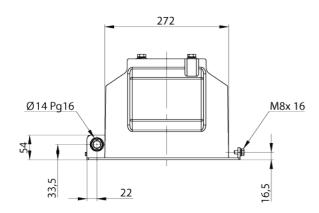
7,2 kV und 12 kV - Schmale Bauform gemäß DIN 42600, Teil 9

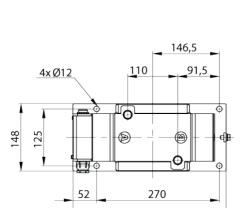
Beschreibung:

Mittelspannungs-Spannungswandler für Innenraumanwendungen sind gießharzisoliert und können einen oder mehrere netzseitige Primärspannungen proportional und phasengetreu in genormte Sekundärspannungen übertragen. Einsetzbar sind diese Spannungswandler sowohl für Mess- als auch für Schutzzwecke.

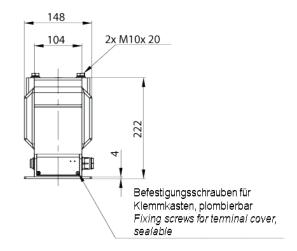
Die Mittelspannungs-Spannungswandler sind auf Wunsch mit zwei Wicklungen erhältlich. Die maximal mögliche Anzahl an Wicklungen ist abhängig von der jeweils gewählten Leistung und Genauigkeitsklasse

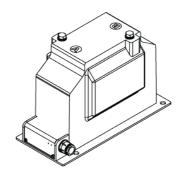
Optional können die Spannungswandler mittels einer Sekundäranzapfung für zwei primäre Bemessungsspannungen gefertigt werden.


Ebenfalls besteht die Möglichkeit die Spannungswandler des Typs VTZ12M11-T mit zwei aufgeschraubten Primärsicherungen zu erhalten.


Technische Daten:

	VTZ12M11-T
Max. Betriebsspannung U _m :	12 kV
Bemessungs-Stehwechselspannung:	28 kV
Bemessung-Stehblitzstoßspannung:	75 kV
Bemessungs-Spannungsfaktor:	1,2 x Un / dauernd
Primäre Bemessungsspannung U _{PN}	3.000 V bis 11.000 V
Sekundäre Bemessungsspannung U _{SN}	100 V oder 110 V
Nennleistung in Klasse	max. 20VA in Kl.0,2 max. 50VA in Kl.0,5 max. 100VA in Kl.1
Nenn-Frequenz:	50 / 60 Hz
Optional zur Verrechnung:	Nein
Isolierstoffklasse:	E
Gewicht:	ca. 23 kg


Technische Änderungen vorbehalten



337

Einpolig isolierter Spannungswandler für Innenraumanwendung

24 kV – Schmale Bauform gemäß DIN 42600, Teil 9 mit PTB-Bauartzulassung und Beglaubigung erhältlich

Beschreibung:

Mittelspannungs-Spannungswandler für Innenraumanwendungen sind gießharzisoliert und können einen oder mehrere netzseitige Primärspannungen proportional und phasengetreu in genormte Sekundärspannungen übertragen.

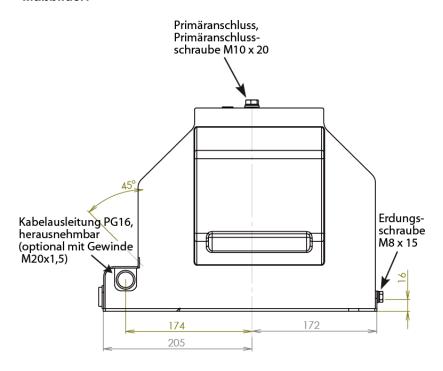
Einsetzbar sind diese Spannungswandler sowohl für Mess- als auch für Schutzzwecke und können optional nach dem Konformitätsbewertungsverfahren zur Verrechnung zugelassen werden.

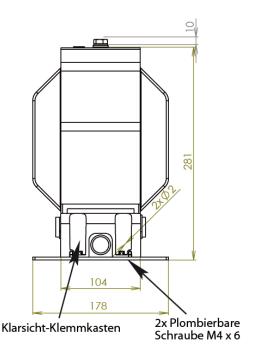
Die Mittelspannungs-Spannungswandler sind auf Wunsch mit zwei Wicklungen erhältlich. Die maximal mögliche Anzahl an Wicklungen ist abhängig von der jeweils gewählten Leistung und Genauigkeitsklasse

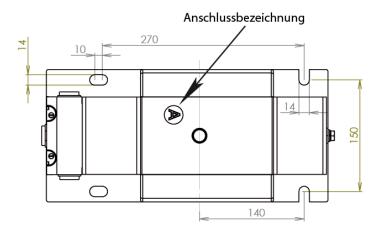
Bei den einpolig isolierten Spannungswandlern besteht zudem die Möglichkeit, diese mit einer zusätzlichen Wicklung zur Erdschlusserfassung auszuführen.

Optional können die Spannungswandler mittels einer Sekundäranzapfung für zwei primäre Bemessungsspannungen gefertigt werden

Ebenfalls besteht die Möglichkeit die Spannungswandler des Typs (E)VTS24M32-T mit einer aufgeschraubten Primärsicherung zu erhalten.


Technische Daten:


	(E)VTS24M32-T
Max. Betriebsspannung U _m :	24 kV
Bemessungs-Stehwechselspannung:	50 kV
Bemessung-Stehblitzstoßspannung:	125 kV
Bemessungs-Spannungsfaktor:	1,9 x Un / 8h
Primäre Bemessungsspannung U _{PN}	13.800/√3 V bis 22.000/√3 V
Sekundäre Bemessungsspannung U _{SN}	100/√3 V oder 110/√3 V
Sekundäre Bemessungsspannung der Erdschlusswicklungen (da-dn)	100/3 V oder 110/3 V
Nennleistung in Klasse	max. 25VA in Kl.0,2 max. 75VA in Kl.0,5 max. 150VA in Kl.1
Nenn-Frequenz:	50 / 60 Hz
Optional zur Verrechnung:	Ja
Isolierstoffklasse:	E
Gewicht:	ca. 28 kg


Technische Änderungen vorbehalten

Zweipolig isolierter Spannungswandler für Innenraumanwendung

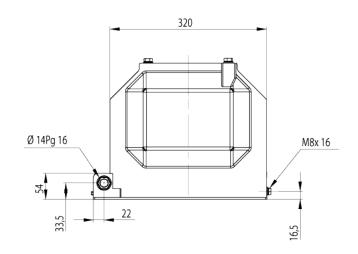
24 kV - Schmale Bauform gemäß DIN 42600, Teil 9

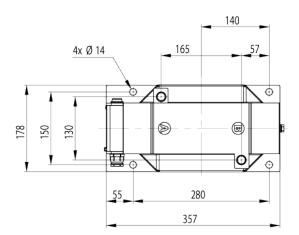
Beschreibung:

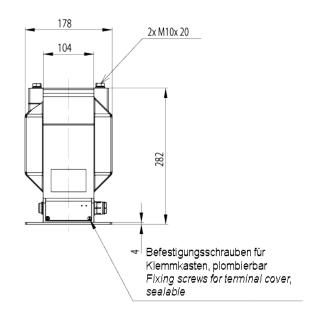
Mittelspannungs-Spannungswandler für Innenraumanwendungen sind gießharzisoliert und können einen oder mehrere netzseitige Primärspannungen proportional und phasengetreu in genormte Sekundärspannungen übertragen. Einsetzbar sind diese Spannungswandler sowohl für Mess- als auch für Schutzzwecke.

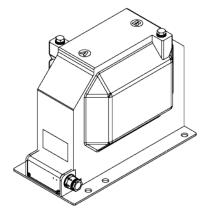
Die Mittelspannungs-Spannungswandler sind auf Wunsch mit zwei Wicklungen erhältlich. Die maximal mögliche Anzahl an Wicklungen ist abhängig von der jeweils gewählten Leistung und Genauigkeitsklasse

Optional können die Spannungswandler mittels einer Sekundäranzapfung für zwei primäre Bemessungsspannungen gefertigt werden.


Ebenfalls besteht die Möglichkeit die Spannungswandler des Typs VTZ24M32-T mit zwei aufgeschraubten Primärsicherungen zu erhalten.


Technische Daten:


	VTZ24M32-T
Max. Betriebsspannung U _m :	24 kV
Bemessungs-Stehwechselspannung:	50 kV
Bemessung-Stehblitzstoßspannung:	125 kV
Bemessungs-Spannungsfaktor:	1,2 x Un / dauernd
Primäre Bemessungsspannung U _{PN}	13.800 V bis 22.000 V
Sekundäre Bemessungsspannung U _{SN}	100 V oder 110 V
Nennleistung in Klasse	max. 20VA in Kl.0,2 max. 50VA in Kl.0,5 max. 100VA in Kl.1
Nenn-Frequenz:	50 / 60 Hz
Optional zur Verrechnung:	Nein
Isolierstoffklasse:	E
Gewicht:	ca. 28 kg


Technische Änderungen vorbehalten

Einpolig isolierter Spannungswandler für Innenraumanwendung 36 kV

mit PTB-Bauartzulassung und Beglaubigung erhältlich

Beschreibung:

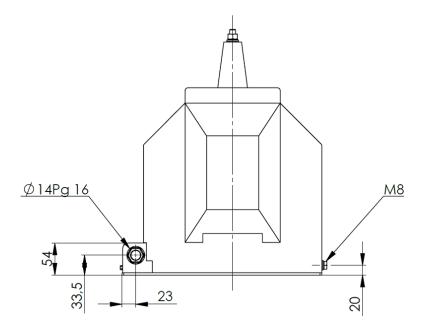
Mittelspannungs-Spannungswandler für Innenraumanwendungen sind gießharzisoliert und können einen oder mehrere netzseitige Primärspannungen proportional und phasengetreu in genormte Sekundärspannungen übertragen.

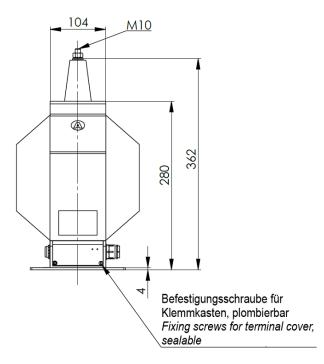
Einsetzbar sind diese Spannungswandler sowohl für Mess- als auch für Schutzzwecke und können optional nach dem Konformitätsbewertungsverfahren zur Verrechnung zugelassen werden.

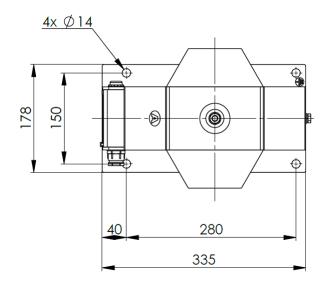
Die Mittelspannungs-Spannungswandler sind auf Wunsch mit zwei Wicklungen erhältlich. Die maximal mögliche Anzahl an Wicklungen ist abhängig von der jeweils gewählten Leistung und Genauigkeitsklasse

Bei den einpolig isolierten Spannungswandlern besteht zudem die Möglichkeit, diese mit einer zusätzlichen Wicklung zur Erdschlusserfassung auszuführen.

Optional können die Spannungswandler mittels einer Sekundäranzapfung für zwei primäre Bemessungsspannungen gefertigt werden


Ebenfalls besteht die Möglichkeit die Spannungswandler mit einer in der Bauform integrierten Primärsicherung (Typ: VTS36M44F-T) zu erhalten.


Technische Daten:


	(E)VTS36M4-T				
Max. Betriebsspannung U _m :	36 kV				
Bemessungs-Stehwechselspannung:	70 kV				
Bemessung-Stehblitzstoßspannung:	170 kV				
Bemessungs-Spannungsfaktor:	1,9 x Un / 8h				
Primäre Bemessungsspannung U _{PN}	24.000/√3 V bis 33.000/√3 V				
Sekundäre Bemessungsspannung U _{SN}	100/√3 V oder 110/√3 V				
Sekundäre Bemessungsspannung der	100/3 V oder 110/3 V				
Erdschlusswicklungen (da-dn)	27/4 / /// 2				
	max. 25VA in Kl.0,2				
Nennleistung in Klasse	max. 75VA in Kl.0,5				
	max. 150VA in Kl.1				
Nenn-Frequenz:	50 / 60 Hz				
Optional zur Verrechnung:	Ja				
Isolierstoffklasse:	E				
Gewicht:	ca. 32 kg				

Technische Änderungen vorbehalten

CTO

Kabelumbau-Stromwandler im Vollverguss für Innenraumanwendungen 0,72 kV / 1,2 kV

Merkmale / Nutzen

- Kabelumbau-Stromwandler je nach Auslegung geeignet sowohl für Messals auch für Schutzzwecke
- Der modulare Aufbau dieser Geräteserie lässt eine große Anzahl von Variationen innerhalb der einzelnen Baugrößen zu (Details zu den Baugrößen finden Sie auf der nächsten Seite.
- Nennspannung: 0,72/3/- kV oder 1,2/6/- kV; bei entsprechender Isolation kann der Strom-Wandler auch oberhalb der 0,72 kV bzw. 1,2 kV eingesetzt werden.
- Primärstrombereiche: 30 A ... 5000 A
- Sekundärströme: 1 A, 2 A oder 5 A
- Nennleistungen: 1 VA ... 30 VA
- Genauigkeitsklassen Messwandler 0,2S; 0,2; 0,5S; 0,5; 1; 3
- Überstrombegrenzungsfaktor für Messkerne: FS5 oder FS10
- Genauigkeitsklassen Schutzstromwandler 5P / 10P / PX
- Genauigkeits-Grenzfaktor für Schutzkerne: 5, 10, 15, 20, 30, 60

Abmessungen:

Primärleiterdurchmesser: max. 360 mm Baubreite: 100 - 500 mm Bautiefe: 60 - 300 mm

Details zu den Abmessungen finden Sie auf der nächsten Seite.

Technische Daten:

Therm. Bem.-Dauerstrom I_{cth} : 1,0 x I_N oder 1,2 x I_N

andere Werte auf Anfrage

Therm. Bem.-Kurzzeitstrom I_{th} : 100 x I_N / 1 Sek., max. 100kA

andere Werte auf Anfrage

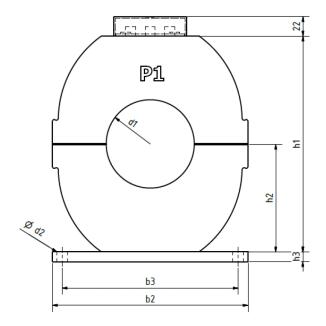
Dynamischer Bem.-Stoßstrom I_{dyn}: 2,5 x I_{th}

Max. Betriebsspannung U_m: 0,72 kV oder 1,2 kV

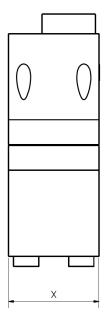
Isolationsprüfspannung: 3 kV, U_{eff}, 50 Hz, 1 Min. oder

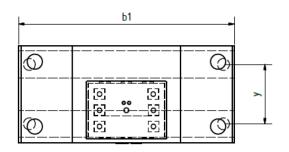
6 kV, U_{eff}, 50 Hz, 1 Min.

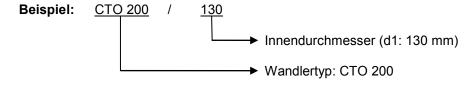
Nenn-Frequenz: 50 Hz oder 60 Hz, andere Werte auf Anfrage


Isolierstoffklasse: E

Angewandte technische Normen: DIN EN 61869, Teil 1 + 2


Weitere Informationen:


- In Polyurethan vollvergossener Kabelumbau-Stromwandler
- Die Stromwandler des Typs CTO sind für den nachträglichen Einbau in bestehenden Niederspannungsschaltanlagen vorgesehen. Darüber hinaus gibt es Anwender, welche diesen Stromwandler bei entsprechender Isolation des Primärleiters auch in Mittelspannungsschaltanlagen einsetzen.
 Weitere Einsatzgebiete sind Windenergieanlagen, Anlagen zur Energieerzeugung auf Schiffen, Energieverteilungsanlagen,...
- Die beiden Stromwandler-Hälften werden über vier Schrauben mit Druckfedern oder Federspangen an den Seiten zusammengehalten, was einen gleichmäßigen Anpressdruck beider Hälften gewährleistet.
- Die Sekundäranschlüsse werden werkseitig mit M5-Schrauben bestückt. Als Berührungsschutz dient eine Klarsicht-Abdeckkappe.
- Schutzart: Gehäuse: IP54, Klemmenabdeckung: IP20
- Arbeitstemperaturbereich: -5°C < T < +50°C
- Lagertemperaturbereich: -25°C < T < +70°C
- Wandlerbefestigung mittels am Gießharzkörper angebrachten Fußleisten
- Verpackungseinheit: 1 Stk.
- Zolltarifnummer: 85043129



X *	у*
90	60 ¹⁾
120	90 ¹⁾
150	120
200	170
250	220
300	270

^{*} Bautiefe (Maß x + y) abhängig von Art und Anzahl der installierten Messsysteme.

Bei x = 90 mm: y = 105 mm Bei x = 120 mm; y = 135 mm

Bestimmung der Wandlerbezeichnung:

Wandlertyp	b1	b2	b3	max. d1	d2	h1	h2	h3	Bautiefe
CTO 100 ¹⁾	100	100	60	50	6	120	60	3	max. 120 mm
CTO 120 ¹⁾	120	120	70	65	6	135	67,5	3	max. 120 mm
CTO 135	135	150	120	90	9	150	75	10	max. 120 mm
CTO 150	150	150	120	110	9	170	85	10	max. 120 mm
CTO 170	170	170	150	110	11	185	92,5	10	max. 120 mm
CTO 200	200	200	180	140	11	200	100	10	max. 300 mm
CTO 250	250	250	230	160	11	290	145	10	max. 300 mm
CTO 300	300	300	280	210	11	340	170	10	max. 300 mm
CTO 350	350	350	330	270	11	390	195	10	max. 300 mm
CTO 500	500	500	440	360	11	500	250	10	max. 300 mm

¹⁾ Abweichende Maße bei CTO 100 und CTO 120:

CTR

Einteiliger Stromwandler im Vollverguss für Innenraumanwendungen 0,72 kV / 1,2 kV

Merkmale / Nutzen

- Einteiliger Stromwandler der je nach Auslegung sowohl für Messals auch für Schutzzwecke einsetzbar ist.
- Der modulare Aufbau dieser Geräteserie lässt eine große Anzahl von Variationen innerhalb der einzelnen Baugrößen zu (z.B. zwei Kerne in einem Gerät), Details zu den Baugrößen finden Sie auf der nächsten Seite.
- Nennspannung: 0,72/3/- kV oder 1,2/6/- kV; bei entsprechender Isolation kann der Strom-Wandler auch oberhalb der 0,72 kV bzw. 1,2 kV eingesetzt werden.
- Primärstrombereiche: 30 A ... 5000 A
- Sekundärströme: 1 A, 2 A oder 5 A
- Nennleistungen: 1 VA ... 30 VA
- Genauigkeitsklassen Messwandler 0,2S; 0,2; 0,5S; 0,5; 1; 3
- Überstrombegrenzungsfaktor für Messkerne: FS5 oder FS10
- Genauigkeitsklassen Schutzstromwandler 5P / 10P / PX
- Genauigkeits-Grenzfaktor für Schutzkerne: 5, 10, 15, 20, 30, 60

Abmessungen:

Primärleiterdurchmesser: max. 360 mm Baubreite: 100 - 500 mm Bautiefe: 60 - 300 mm

Details zu den Abmessungen finden Sie auf der nächsten Seite.

Technische Daten:

Therm. Bem.-Dauerstrom I_{cth} : 1,0 x I_N oder 1,2 x I_N

andere Werte auf Anfrage

Therm. Bem.-Kurzzeitstrom Ith: 100 x I_N / 1 Sek., max. 100kA

andere Werte auf Anfrage

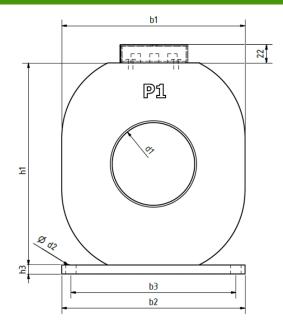
Dynamischer Bem.-Stoßstrom I_{dvn}: 2,5 x I_{th}

Max. Betriebsspannung U_m: 0,72 kV oder 1,2 kV

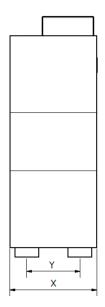
Isolationsprüfspannung: 3 kV, U_{eff}, 50 Hz, 1 Min. oder

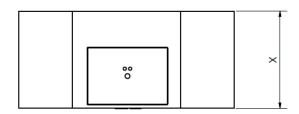
6 kV, U_{eff}, 50 Hz, 1 Min.

Nenn-Frequenz: 50 Hz oder 60 Hz, andere Werte auf Anfrage

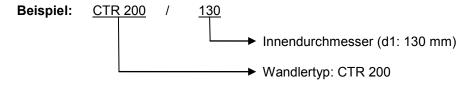

Isolierstoffklasse: E

Angewandte technische Normen: DIN EN 61869, Teil 1 + 2


Weitere Informationen:


- In Polyurethan vollvergossener Stromwandler
- Die Stromwandler des Typs CTR sind für den Einbau in neuen Niederspannungsschaltanlagen vorgesehen.
 Darüber hinaus gibt es Anwender, welche diesen Stromwandler bei entsprechender Isolation des Primärleiters auch in Mittelspannungsschaltanlagen einsetzen.
 - Weitere Einsatzgebiete sind Windenergieanlagen, Anlagen zur Energieerzeugung auf Schiffen, Energieverteilungsanlagen,...
- Der Stromwandler wird in Standardausführung mit einem runden Kernfenster gefertigt, kann aber optional auch mit eckigem Kernfenster für Schienenmontage geliefert werden.
- Die Sekundäranschlüsse werden werkseitig mit M5-Schrauben bestückt. Als Berührungsschutz dient eine Klarsicht-Abdeckkappe.
- Schutzart: Gehäuse: IP54, Klemmenabdeckung: IP20
- Arbeitstemperaturbereich: -5°C < T < +50°C
- Lagertemperaturbereich: -25°C < T < +70°C
- Wandlerbefestigung mittels am Gießharzkörper angebrachten Fußleisten (opt.: stirnseitige Gewindebuchsen)
- Verpackungseinheit: 1 Stk.
- Zolltarifnummer: 85043129

x *	y*
60	30 ¹⁾
90	60 ¹⁾
120	90 ¹⁾
150	120
200	170
250	220
300	270


- * Bautiefe (Maß x + y) abhängig von Art und Anzahl der installierten Messsysteme..
- $^{\rm 1)}$ Abweichende Maße bei CTR 100, CTR 110 und CTO 120:

Bei x = 60 mm: y = 75 mm

Bei x = 90 mm: y = 105 mm

Bei x = 120 mm; y = 135 mm

Bestimmung der Wandlerbezeichnung:

Wandlertyp	b1	b2	b3	max. d1	d2	h1	h2	h3	Bautiefe
CTR 100 ¹⁾	100	100	80	60	9	110	55	5	max. 120 mm
CTR 110 ¹⁾	110	110	90	70	9	120	60	5	max. 120 mm
CTR 120 ¹⁾	120	120	100	75	9	130	65	5	max. 120 mm
CTR 135	135	150	130	90	9	150	75	10	max. 120 mm
CTR 150	150	150	130	110	9	165	82,5	10	max. 150 mm
CTR 170	170	170	150	110	11	185	92,5	10	max. 150 mm
CTR 200	200	200	180	140	11	220	110	10	max. 200 mm
CTR 250	250	250	230	150	11	270	135	10	max. 200 mm
CTR 300	300	300	280	210	11	330	165	10	max. 250 mm
CTR 350	350	350	330	250	11	380	190	10	max. 250 mm
CTR 400	400	400	370	300	13	430	215	15	max. 300 mm
CTR 500	500	500	440	360	13	530	265	15	max. 300 mm

ASG 106

Rohrstab-Stromwandler, PU-vergossen; Mess- und Schutzwandler in einem Gehäuse 0,72 kV

Merkmale / Nutzen

- Rohrstabstromwandler der je nach Auslegung mit bis zu 4 Messsystemen in einem Gehäuse ausgeführt werden kann
- Kombination von Messwandlern und Schutzwandlern in einem Gehäuse möglich
- Nennspannung 0,72/3/- kV; bei entsprechender Isolation kann der Stromwandler auch oberhalb 0,72 kV eingesetzt werden.
- Primärstrombereiche 40 A ... 1250 A
- Sekundärströme 1 A, 2 A oder 5A
- Nennleistungen 2,5 VA ... 30 VA
- Genauigkeitsklassen Messwandler 0,2S; 0,2; 0,5S; 0,5; 1; 3
- Überstrombegrenzungsfaktor für Messkerne: FS5 oder FS10
- Genauigkeitsklassen Schutzstromwandler 5P / 10P / PX

Abmessungen:

Primärleiterdurchmesser: 106 mm

Baubreite: 190 mm

Wandlertiefen: 50, 100, 170, 214 mm*

Details zu den Abmessungen finden Sie auf der nächsten Seite.

Technische Daten:

Therm. Nenndauerstrom I_{cth} : 1,2 x I_N ,

andere Werte auf Anfrage

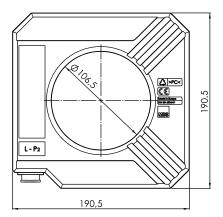
Therm. Nennkurzzeitstrom I_{th}: 25 kA, 3 Sek.,

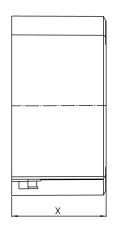
andere Werte auf Anfrage

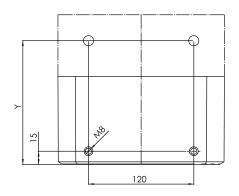
Dynamischer Bem.-Stoßstrom I_{dvn}: 2,5 x I_{th}

Max. Betriebsspannung U_m: 0,72 kV

Isolationsprüfspannung: 3 kV, U_{eff}, 50 Hz, 1 Min. Nenn-Frequenz: 50 Hz, andere Werte auf Anfrage


Isolierstoffklasse: F


Angewandte technische Normen: DIN EN 61869, Teil 1 + 2


Weitere Informationen:

- Messsysteme in Polyurethanharz vollvergossen
- Der Vollverguss und die verwendeten, hochwertigen Werkstoffe ermöglichen den Einsatz unter erhöhten klimatischen und mechanischen Beanspruchungen (z.B. generatornaher Betrieb)
- Vergussmaterial mit hoher Brandsicherheit (UL94-V0)
- Wandler typgeprüft durch Siemens AG
- Stromwandler des Typs ASG 106 sind für den Einsatz in Niederspannungsschaltanlagen vorgesehen.
 Darüber hinaus gibt es Anwender, welche diesen Stromwandler bei entsprechender Isolation des Primärleiters auch in Mittelspannungsschaltanlagen einsetzen.
- Messkerne mit PTB-Bauartzulassung lieferbar
- 4 unterschiedliche Gehäusebautiefen ermöglichen die Realisierung variabler Kundenanforderungen
- Reduzierung des externen Verdrahtungsaufwandes durch fest angeordnete, flexible CU-Sekundär-Anschlussleitungen (3,6 m, 4 mm², andere Längen und Nennquerschnitte auf Anfrage)
- Flexible Sekundäranschlussleitungen werden durch zusätzlich angebrachten Gewebeflechtschlauch mechanisch geschützt
- Einfluss der Anschlussleitungslänge wird bei der Auslegung der Messsysteme berücksichtigt
- Arbeitstemperaturbereich: -5°C < T < +60°C
- Lagertemperaturbereich: -25°C < T < +70°C
- Gehäusematerial: ABS, selbstverlöschend, UL 94-V0
- Wandlerbefestigung mittels zwei Stück (optional 4 Stück) Sechskantschrauben M8x30
- Verpackungseinheit: 1 Stk.
- Zolltarifnummer: 85043129

Gehäusetiefe x*	50 mm	100 mm	170 mm	214 mm
Maß y (optional!)	-	85 mm	155 mm	199 mm

^{*} Maß x + y abhängig von Art und Anzahl der installierten Messsysteme.

Unser Lieferprogramm:

- Analoge Einbauinstrumente, Schalttafelinstrumente
- Digitale Einbauinstrumente (u.a. Großanzeigen, Bargraphanzeiger, TFT)
- Multifunktionsgeräte
- Netzanalysatoren
- Messumformer für alle Messgrößen
- Energiezähler (mit und ohne MID)
- Tragbare Messgeräte u. Kalibratoren (Prozesssignale, Pt100-Fühler, Thermoel.)
- Stromwandler (Standard-, Allstrom-, Differenzstrom-, Umbau-, Rohrstabwandler)
- Stromwandler zur Verrechnung
- Rogowski-Spulen
- Spannungswandler
- Mittelspannungswandler
- Nebenwiderstände (Shunts)
- Nockenschalter, Lastschalter
- Widerstandheizungen, Gebläseheizungen
- Thermostate, Hygrostate
- Störmeldebausteine
- Schalterstellungsanzeiger

Klaus-von-Klitzing-Str. 3 76829 Landau Tel: 06341/68156-0, Fax: -66 info@debnar-messtechnik.de www.debnar-messtechnik.de